Maximal Frattini quotients of p-Poincaré Mapping class groups Mike Fried, UCI and MSU-Billings 3/03/07 http://math.uci.edu/~mfried $\rightarrow \S 1 . a \rightarrow$
\# Generalizing modular curve properties to Modular Towers \rightarrow \#1 mt-overview.html
Let $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$ be a function on a Riemann surface X, and assume φ is Galois, with group G.
Then, φ defines these quantities:

- Unordered branch points $z=\left\{z_{1}, \ldots, z_{r}\right\} \in U_{r}$;
- Conjugacy classes $\mathbf{C}=\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{r}\right\}$ in G; and
- A Poincaré extension of groups:
$\psi_{\varphi}: M_{\varphi} \rightarrow G$ with $\operatorname{ker}_{\psi} \stackrel{\text { def }}{=} \operatorname{ker}\left(M_{\varphi} \rightarrow G\right)=\pi_{1}(X)$.

Using Classical Generators of $\pi_{1}\left(\mathbb{P}_{z}^{1} \backslash \boldsymbol{z}, z_{0}\right)$

Denote $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{r}\right)$ (see App. A) \mapsto an isotopy class of r generators $\overline{\boldsymbol{g}}=\left(\bar{g}_{1}, \ldots, \bar{g}_{r}\right)$.

Refer to their images in M_{φ} also as \bar{g}, and their images in G by $\left(g_{1}, \ldots, g_{r}\right)=\boldsymbol{g}$.

Then, \boldsymbol{g} is in the Nielsen class of (G, \mathbf{C}) :

$$
\mathrm{Ni}(G, \mathbf{C}) \stackrel{\text { def }}{=}\left\{\boldsymbol{g} \in \mathbf{C} \mid\langle\boldsymbol{g}\rangle=G, \Pi(\boldsymbol{g}) \stackrel{\text { def }}{=} g_{1} \cdots g_{r}=1\right\}
$$

Notion: Given classical generators $\overline{\boldsymbol{g}}$ of M_{φ}, rename it $M_{\bar{g}}: \psi_{\varphi}$ becomes $\psi_{g}: M_{\bar{g}} \rightarrow G$, by $\bar{g}_{i} \mapsto g_{i}$.

E (xtension) P (roblem) (Item \#1 below)

Given $(\boldsymbol{g}, \mathbf{C})$, and a prime p :

1. When does ψ_{g} extend to all $H \rightarrow G \rightarrow 1$ with p-group kernel? Abelianized version (App. C): To all H with $\operatorname{ker}(H \rightarrow G)$ abelian.
2. How does this depend on g ?
3. What equivalence relation on extensions gives a reasonable description of all cases?
4. Why should this concern mathematics?

Non-obvious Reductions

- Complete $M_{\bar{g}}$ so $\operatorname{ker}_{\psi_{\varphi}}=$ pro- p completion of $\pi_{1}(X)$.
- Restrict in \#1 (p. 3) to p-Frattini covers of G.
- Any $g \in \mathbf{C}$ must have order prime to p.
- G is p-perfect (no \mathbb{Z} / p quotient; or $\# 1$ impossible).

Equivalent: When are all p-Frattini covers $H \rightarrow$ $G \rightarrow 1$ achieved by unramified extensions $Y_{H} \rightarrow X$?

Deformation equivalence of extensions

If φ were a cyclic cover of \mathbb{P}^{1}, we could write it by hand. It isn't. Further, why deal one cover at-a-time? Consider all covers with (G, \mathbf{C}) as their data: In the Nielsen class.

Deformation Conclusion: Can always start by fixing branch points z^{0}. Any cover (with branch points z) deforms to a cover with branch points z^{0}. Then, $M_{\bar{g}}$ and any of its extension properties deform with it.

Braid equivalence of extensions

The Hurwitz Monodromy group H_{r} has two generators given by their action on $\overline{\boldsymbol{g}}$:

- Shift: sh : $\overline{\boldsymbol{g}} \mapsto\left(\bar{g}_{2}, \ldots, \bar{g}_{r}, \bar{g}_{1}\right)$; and
- 2ndTwist: $q_{2}: \overline{\boldsymbol{g}}_{\mapsto}\left(\bar{g}_{1}, \bar{g}_{2} \bar{g}_{3} \bar{g}_{2}^{-1}, \bar{g}_{2}, \bar{g}_{4}, \ldots\right): q_{i+2} \stackrel{\text { def }}{=} \mathbf{s h}^{i} q_{2} \mathbf{s h}^{-i}$. Braid Comments: H_{r} is automorphism group of $\pi_{1}\left(\mathbb{P}_{z}^{1} \backslash \boldsymbol{z}^{0}, z_{0}\right)$ preserving classical generators. It acts compatibly on these:
- Inner Nielsen Classes: $\mathrm{Ni}(G, \mathbf{C}) / G \stackrel{\text { def }}{=} \mathrm{Ni}^{\text {in }}$
- Absolute Nielsen classes: $\mathrm{Ni}(G, \mathbf{C}) / N_{S_{n}}(G) \stackrel{\text { def }}{=} \mathrm{Ni}^{\text {abs }}$ (given $G \leq S_{n}$ a permutation representation)
- Poincaré extensions: $\psi_{\boldsymbol{g}}: M_{\bar{g}} \rightarrow G$, preserving extension properties of $\psi_{\boldsymbol{g}}$

Modular Towers and Start of Criterion for GOAL 1

GOAL 1: Given (G, \mathbf{C}, p), understand projective systems of H_{r} orbits acting on $\left\{\mathrm{Ni}(H, \mathbf{C})^{\text {in }}\right\}_{H \rightarrow G}$: Running over p-Frattini covers $H \rightarrow G$.

Reduction: Take $G_{1} \rightarrow G=G_{0}$ to be the maximal p-Frattini cover of G with elementary p group kernel. Let $G_{k+1}=G_{1}\left(G_{k}\right)$. In GOAL 1 need only the case H runs over the G_{k} s.

Def: M(odular) T (ower): A projective system $\left\{O_{k}=H_{r}\left(\boldsymbol{g}_{k}\right)\right\}_{k=0}^{\infty}$ of H_{r} orbits on $\left\{\mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\mathrm{in}}\right\}_{k=0}^{\infty}$.

Inductive Existence of a MT: [Lum, Cor. 4.19], [We]

 Let $\mu_{k}: R_{k} \rightarrow G_{k}$ be the universal exponent p central extension of G_{k} :- $G_{k+1} \rightarrow G_{k}$ factors through μ_{k}.
- $\operatorname{ker}\left(R_{k} \rightarrow G_{k}\right)=$ max. elementary p-quotient of $G_{k} \mathrm{~s}$ Schur multiplier.
Proposition 1 (App. C- Abel. Vers.). If p-perfect G has no p-center, then neither does $G_{k}, k \geq 1$.
$H_{r}\left(\boldsymbol{g}_{k}\right) \subset \mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\text {in }}$ is in the image of $\operatorname{Ni}\left(G_{k+1}, \mathbf{C}\right)^{\text {in }} \Leftrightarrow$ \boldsymbol{g}_{k} is in the image of $\mathrm{Ni}\left(R_{k}, \mathbf{C}\right) \Leftrightarrow H_{r}$ orbit of $M_{\boldsymbol{g}} \rightarrow G$ extends through all G_{k}.

Cusps and the p Cusp Problem

Cusp on an H_{r} orbit $O \subset \mathrm{Ni}(G, \mathbf{C})$:

- $r \geq 5$: Orbit of $\mathrm{Cu}_{r}=\left\langle q_{2}\right\rangle$
- $r=4: \mathrm{Cu}_{r}=\left\langle q_{2}, \mathbf{s h}^{2}, q_{1} q_{3}^{-1}\right\rangle$.

Essential data from conjugacy class of Cu_{r}, so can substitute q_{i} for q_{2}.
p cusp: represented by $g \in O$ for which $p^{\mu_{p}(\boldsymbol{g})} \| \operatorname{ord}\left(g_{2} g_{3}\right) \stackrel{\text { def }}{=}(\boldsymbol{g}) \mathbf{m p r}, \mu_{p}(\boldsymbol{g})>0(p$-mult. of $\boldsymbol{g})$.

Other cusp types for $r=4$ (App. B for $r>4$)

- $\mathrm{g}($ roup $)-p^{\prime}: U_{1,4}(\boldsymbol{g})=\left\langle g_{1}, g_{4}\right\rangle$ and $U_{2,3}(\boldsymbol{g})=\left\langle g_{2}, g_{3}\right\rangle$ are p^{\prime} groups
- o(nly)-p': Not a p cusp, but $U_{1,4}(\boldsymbol{g})$ or $U_{2,3}(\boldsymbol{g}) \operatorname{not} p^{\prime}$.

GOAL 2: Given a MT, $\left\{O_{k} \subset \mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\text {in }}\right\}_{k=0}^{\infty}$, classify when there is a p cusp on O_{k} for $k \gg 0$. Proposition 2 ($\mathrm{g}-p^{\prime} \mathrm{MT}$). If O_{0} has a $g-p^{\prime}$ cusp, then $a \mathrm{MT}, \mathcal{O}=\left\{O_{k} \subset \mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\mathrm{in}}\right\}_{k=0}^{\infty}$, lies over it.

MT Geometric correspondence

$\mathcal{O}=\left\{O_{k} \subset \mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\text {in }}\right\}_{k=0}^{\infty} \Leftrightarrow\left\{\mathcal{H}_{k}^{\prime}\right\}_{k=0}^{\infty}$ where:

- \mathcal{H}_{k}^{\prime} s are (normal) absolutely irreducible algebraic varieties ($\operatorname{dim}=r-3$);
- Cusps at level k correspond to divisors on the normal compactification $\overline{\mathcal{H}}_{k}^{\prime}$.
- ${ }_{0} \boldsymbol{g} \in O_{0}$ a p cusp $\Longrightarrow \mu_{p}(k \boldsymbol{g})=k+\mu_{p}\left({ }_{0} \boldsymbol{g}\right)$.
- $r=4: \mathcal{H}_{k}^{\prime}$, upper-half plane quotient, j-line cover, ramific. order dividing 3 (resp. 2) over 0 (resp. 1).

p Cusps and Main MT Conjecture

Main Conj.: K a number field, then $\mathcal{H}_{k}^{\prime}(K)=\emptyset$ for $k \gg 0$. For $r=4$, let g_{k}^{\prime} be the genus of $\overline{\mathcal{H}}_{k}$.
Proposition 3. If $g_{0}^{\prime}>0,($ resp $=0)$ and, for some $k, \mathcal{H}_{k}^{\prime}$ has a p cusp (resp. three p cusps), then Main Conj. holds for \mathcal{O}.
Example 4 (Liu-Osserman). Among pure-cycle classes, $n \equiv 1$ $\bmod 4, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}$, four reps of the $\frac{n+1}{2}$-cycle conjugacy class is, maybe, the hardest case. Here: $G_{0}=A_{n}$.
For $p=2($ resp. $>2), R_{0}=\operatorname{Spin}_{n}\left(\right.$ resp. $\left.R_{0}=A_{n}\right)$.

Cusp rep listings, $r=4, \mathrm{Ni}_{\left(\frac{n+1}{2}\right)^{4}}^{\mathrm{abs} \text { or in }}$

Define $x_{i, j}=(i i+1 \cdots j)$. $\mathrm{g}-2^{\prime}$ cusps here are shifts of HM reps. $\left(g_{1}, g_{1}^{-1}, g_{2}, g_{2}^{-1}\right)$. Mod conjugation by A_{n} they are

$$
\begin{aligned}
& \mathrm{HM}_{1} \stackrel{\text { def }}{=}\left(x_{\frac{n+1}{2}, 1}, x_{1, \frac{n+1}{2}}, x_{\frac{n+1}{2}, n}, x_{n, \frac{n+1}{2}}\right) \\
& \mathrm{HM}_{2} \stackrel{\text { def }}{=}\left(x_{1, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}, x_{\frac{n+1}{2}, n}, x_{n, \frac{n+1}{2}}\right)
\end{aligned}
$$

Proposition 5. For $n \equiv 1 \bmod 8($ resp. $n \equiv 5 \bmod 8)$, HM_{1} and HM_{2} are (resp. are not) inner equivalent. For the latter, $\left(\mathrm{HM}_{1}\right) q_{1}=\mathrm{HM}_{2}$ implies there is a braid between $\boldsymbol{g} \in \operatorname{Ni}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}\right)^{\text {in }}$ and $h \boldsymbol{g} h^{-1}$ for any $h \in S_{n}$, and so there is one braid orbit on $\operatorname{Ni}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{t^{2}}\right)^{4}}\right)^{\text {in }}$.

For $n \equiv 1 \bmod 8$, if $h \in S_{n} \backslash A_{n}$, there is no braid between g and $h \boldsymbol{g} h^{-1}$. Exactly two braid orbits on $\mathrm{Ni}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}\right)^{\text {in }}$.

Cusp rep listings, $r=4, \mathrm{Ni}_{\left(\frac{n+1}{2}\right)^{4}}$: Table (HM $_{1,0} \mathrm{Cu}_{4} \circ$ sh $\mathrm{Cu}_{4}\left(\mathrm{HM}_{1}\right):\left\{\mathrm{HM}_{1, t}=\left(x_{\frac{n+1}{2}, 1}, x_{1+t, \frac{n+1}{2}+t}, x_{\frac{n+1}{2}+t, n+t}, x_{n, \frac{n+1}{2}}\right)\right\}_{t=0}^{n-1}$ (subscripts $\bmod n$). Row starts ord $\left(g_{2} g_{3}\right)$:
1: $\left(\mathrm{HM}_{1,0}\right) \mathbf{s h}=\left(x_{1, \frac{n+1}{2}}, x_{\frac{n+1}{2}, n}, x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
3: $\left(\mathrm{HM}_{1,1}\right) \mathbf{s h}=\left(x_{2, \frac{n+3}{2}},\left(\frac{n+3}{2} \ldots n 1\right), x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
5: $\left(\mathrm{HM}_{1,2}\right) \mathbf{s h}=\left(x_{3, \frac{n+5}{2}},\left(\frac{n+5}{2} \ldots n 12\right), x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
$\mathrm{n}:\left(\mathrm{HM}_{1, \frac{n-1}{2}}\right) \mathbf{s h}=\left(x_{\frac{n+1}{2}},\left(n 1 \ldots \frac{n-1}{2}\right), x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
$\mathrm{n}:\left(\mathrm{HM}_{1, \frac{n+1}{2}}\right) \mathbf{s h}=\left(\left(\frac{n+3}{2} \ldots n 1\right), x_{1, \frac{n+1}{2}}, x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
5: $\left(\mathrm{HM}_{1, n-2}\right) \mathbf{s h}=\left(\left(n-1 n 1 \ldots \frac{n-3}{2}\right), x_{\frac{n-3}{2}, n-2}, x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
3: $\left(\mathrm{HM}_{1, n-1}\right) \mathbf{s h}=\left(\left(n 1 \ldots \frac{n-1}{2}\right), x_{\frac{n-1}{2}, n-1}, x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$

Pairing on Cu_{4} orbits: $\left(O, O^{\prime}\right) \mapsto\left|O \cap\left(O^{\prime}\right) \mathbf{s h}\right| . \quad O_{5,5 ; 2}$ (resp. $O_{1,2}$) indicates 2 nd mpr 5 , width 5 (resp. only mpr 1 , width 2) orbit. sh-incidence gives $\overline{\mathcal{H}}\left(A_{5}, \mathbf{C}_{3^{4}}\right)^{\text {in,rd }}$ has genus 0 . All $\mathcal{H}_{\left(\frac{n+1}{2}\right)^{4}}^{\text {in,rd }}$ for $n \equiv 1 \bmod 4$ have genus 0 .

Orbit	$O_{5,5 ; 1}$	$O_{5,5 ; 2}$	$O_{3,3 ; 1}$	$O_{3,3 ; 2}$	$O_{1,2}$
$O_{5,5 ; 1}$	0	2	1	1	1
$O_{5,5 ; 2}$	2	0	1	1	1
$O_{3,3 ; 1}$	1	1	0	1	0
$O_{3,3 ; 2}$	1	1	1	0	0
$O_{1,2}$	1	1	0	0	0

Complete orbit for $\bar{M}_{4}=\left\langle\mathbf{s h}, \gamma_{\infty}\right\rangle$ on $\mathrm{Ni}_{3^{4}}^{\text {in,rd }}$ in 2-steps: Apply $\left(\mathbf{s h} \circ \mathrm{Cu}_{4}\right)^{2}$ to H-M rep.

Fried-Serre Lifting Invariant formula

Level 0 Dilemma: $\operatorname{ord}\left(g_{2} g_{3}\right)=\ell$ in each line of Table $\left.\mathbf{H M}_{1,0}\right)_{\mathrm{Cu}_{4} \circ \text { sh }}$ is an odd: no 2 cusps at level 0 . Help by Level 1: The exact condition for each cusp at level 1 above the cusp in Table $_{\left(\mathrm{HM}_{1,0}\right)} \mathrm{Cu}_{4} \circ$ sh to be a 2 cusp is that $\frac{\ell^{2}-1}{8} \equiv 1 \bmod 2$.

Main Conjecture?: $n=5, \ell \in\{1,3,3,5,5\}$, so four (>3) 2 cusps ($\frac{3^{2}-1}{2} \equiv \frac{5^{2}-1}{2} \equiv 1 \bmod 2$).

$$
n=9, \ell \in\{1,3,5,7,9\}: \text { two } 2 \text { cusps }(\Leftrightarrow \ell=3,5) \text { at level }
$$ 1 for certain, but above cusps with middle products 7 and 9 , not clear there is a 2 cusp. Need more info on level 1 cusps.

All $\mathrm{Ni}_{\left(\frac{n+1}{2}\right)^{4}}$ satisfy Main Conjecture for $p=2$

Get all odd $1, \ldots, n$ on left side of Table $_{\left(\mathrm{HM}_{1,0}\right) \mathrm{Cu}_{4} \circ \text { sh }}$, so number of 2 cusps groups with n. For $n=17$ get ≥ 2 more: $\frac{11^{2}-1}{8} \equiv \frac{13^{2}-1}{8} \equiv 1 \bmod 2$.

Appendix A: Classical Generators of $\pi_{1}\left(\mathbb{P}_{z}^{1} \backslash z^{0}, z_{0}\right)$

Appendix B: Classification of cusps on a MT

Appendix C: Abelianized versions of Goals 1 and 2

Item \#1 on p. 3 has an abelianized version \Leftrightarrow Abelianized version of p. 4 Goal: When are all p-Frattini covers $H \rightarrow G \rightarrow 1$ achieved by abelian unramified extensions $Y_{H} \rightarrow X$? With G_{k} the characteristic p-Frattini cover G_{k}, and $\operatorname{ker}_{k}^{*}=\left(\operatorname{ker}\left(G_{k} \rightarrow G\right), \operatorname{ker}\left(G_{k} \rightarrow G\right)\right)$, form $G_{k}^{\text {ab }}=G_{k} / \operatorname{ker}_{k}^{*}$. Proposition 6 (Abel. Vers. of Prop. 1, p.3). Let $R_{0}^{\prime} \rightarrow G$ be the maximal central p-Frattini extension of G.

Then, for all $k, H_{r}\left(\boldsymbol{g}_{0}\right) \subset \mathrm{Ni}\left(G_{0}, \mathbf{C}\right)^{\text {in }}$ is in the image of $\mathrm{Ni}\left(G_{k}^{\mathrm{ab}}, \mathbf{C}\right)^{\text {in }} \Leftrightarrow \boldsymbol{g}_{0}$ is in the image of $\mathrm{Ni}\left(R_{0}^{\prime}, \mathbf{C}\right)$.

Abbreviated References: [Lum] has much more

[BFr02]P. Bailey and M. D. Fried, Hurwitz monodromy, spin separation and higher levels of a Modular Tower, in Proceed. of Symposia in Pure Math. 70 (2002) editors M. Fried and Y. Ihara, 1999 von Neumann Symposium, August 16-27, 1999 MSRI, 79-221.
[STMT]A. Cadoret, Modular Towers and Torsion on Abelian Varieties, preprint May, 2006.
[D06]P. Dèbes, Modular Towers: Construction and Diophantine Questions, same vol. as [LUM].
[Def-Lst]Select from the list in www.math.uci.edu/conffiles_rims/deflist-mt/full-deflist- mt.html of present MTrelated definitions. 09/05/06 examples: Branch-Cycle-Lem CFPV-Thm Cusp-Comp-Tree FS-Lift-Inv Hurwitz-Spaces Main-MT-Conj Modular-Towers Nielsen- Classes RIGP Strong-Tors-Conj mt-rigp-stc p-Poincare-Dual sh-Inc-Mat. A similar URL, www.math.uci.edu/conffiles_rims/deflist-mt/full-paplistmt.html, is a repository for not just mine, but also of the growing list of those joining the MT project.
[FrK97]M. Fried and Y. Kopeliovic, Applying Modular Towers to the inverse Galois problem, Geometric Galois Actions II Dessins d'Enfants, Mapping Class Groups . . . , vol. 243, Cambridge U. Press, 1997, London Math. Soc. Lecture Notes, 172-197.
[Fr77]M. Fried, Fields of definition of function fields and Hurwitz families and groups as Galois groups, Communications in Algebra 5 (1977), 17-82.
[FrV]Michael D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), no. 4, 771-800.
[Lum]M. D. Fried, The Main Conjecture of Modular Towers and its higher rank generalization, in Groupes de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et Congres, 13 (2006), 165-230.
[AGLI]M. D. Fried, Alternating groups and lifting invariants, (2006), 1-36.
[LOs06]F. Liu and B. Osserman, The Irreducibility of Certain Pure-cycle Hurwitz Spaces, preprint as of August 10, 2006.
[Ser90a].-P. Serre, Relêvements dans \tilde{A}_{n}, C. R. Acad. Sci. Paris 311 (1990), 477-482.
[We]T. Weigel, Maximal p-frattini quotients of p-poincare duality groups of dimension 2, volume for O.H. Kegel on his 70th birthday, Arkiv der Mathematik-Basel, 2005.

