Maximal Frattini quotients of p-Poincaré Mapping class groups Mike Fried, UCI and MSU-Billings 3/03/07 http://math.uci.edu/~mfried → §1.a →

Generalizing modular curve properties to Modular Towers $\rightarrow \#1 \text{ mt-overview.html}$

Let $\varphi:X\to\mathbb{P}^1_z$ be a function on a Riemann surface X, and assume φ is Galois, with group G.

Then, φ defines these quantities:

- ullet Unordered branch points $oldsymbol{z}=\{z_1,\ldots,z_r\}\in U_r;$
- ullet Conjugacy classes ${f C}=\{{
 m C}_1,\ldots,{
 m C}_r\}$ in G; and
- A *Poincaré extension* of groups:

$$\psi_{\varphi}: M_{\varphi} \to G \text{ with } \ker_{\psi} \stackrel{\text{def}}{=} \ker(M_{\varphi} \to G) = \pi_1(X).$$

Using Classical Generators of $\pi_1(\mathbb{P}^1_z \setminus \boldsymbol{z}, z_0)$

Denote $(\mathcal{P}_1, \dots, \mathcal{P}_r)$ (see App. A) \mapsto an isotopy class of r generators $\bar{\boldsymbol{g}} = (\bar{g}_1, \dots, \bar{g}_r)$.

Refer to their images in M_{φ} also as $\bar{\boldsymbol{g}}$, and their images in G by $(g_1,\ldots,g_r)=\boldsymbol{g}$.

Then, g is in the Nielsen class of (G, \mathbf{C}) :

$$Ni(G, \mathbf{C}) \stackrel{\text{def}}{=} \{ \mathbf{g} \in \mathbf{C} \mid \langle \mathbf{g} \rangle = G, \Pi(\mathbf{g}) \stackrel{\text{def}}{=} g_1 \cdots g_r = 1 \}.$$

Notion: Given classical generators \bar{g} of M_{φ} , rename it $M_{\bar{g}}$: ψ_{φ} becomes $\psi_{g}: M_{\bar{g}} \to G$, by $\bar{g}_{i} \mapsto g_{i}$.

E(xtension) P(roblem) (Item #1 below)

Given $(\boldsymbol{g}, \boldsymbol{C})$, and a prime p:

- 1. When does ψ_g extend to all $H \to G \to 1$ with p-group kernel? Abelianized version (App. C): To all H with $\ker(H \to G)$ abelian.
- 2. How does this depend on g?
- 3. What equivalence relation on extensions gives a reasonable description of all cases?
- 4. Why should this concern mathematics?

Non-obvious Reductions

- Complete $M_{\bar{g}}$ so $\ker_{\psi_{\varphi}} = \text{pro-}p$ completion of $\pi_1(X)$.
- Restrict in #1 (p. 3) to p-Frattini covers of G.
- Any $g \in \mathbf{C}$ must have order prime to p.
- G is p-perfect (no \mathbb{Z}/p quotient; or #1 impossible).

Equivalent: When are all p-Frattini covers $H \to G \to 1$ achieved by unramified extensions $Y_H \to X$?

Deformation equivalence of extensions

If φ were a cyclic cover of \mathbb{P}^1 , we could write it by hand. It isn't. Further, why deal one cover at-a-time? Consider all covers with (G, \mathbf{C}) as their data: In the Nielsen class.

Deformation Conclusion: Can always start by fixing branch points z^0 . Any cover (with branch points z) deforms to a cover with branch points z^0 . Then, $M_{\bar{g}}$ and any of its extension properties deform with it.

Braid equivalence of extensions

The Hurwitz Monodromy group H_r has two generators given by their action on \bar{g} :

- Shift: $\mathbf{sh}: \bar{\boldsymbol{g}} \mapsto (\bar{g}_2, \dots, \bar{g}_r, \bar{g}_1)$; and
- 2ndTwist: $q_2 : \bar{g} \mapsto (\bar{g}_1, \bar{g}_2 \bar{g}_3 \bar{g}_2^{-1}, \bar{g}_2, \bar{g}_4, \dots) : q_{i+2} \stackrel{\text{def}}{=} \mathsf{sh}^i q_2 \mathsf{sh}^{-i}$.

Braid Comments: H_r is automorphism group of $\pi_1(\mathbb{P}^1_z \setminus \mathbf{z}^0, z_0)$ preserving classical generators. It acts compatibly on these:

- Inner Nielsen Classes: $Ni(G, \mathbf{C})/G \stackrel{\text{def}}{=} Ni^{\text{in}}$
- Absolute Nielsen classes: $Ni(G, \mathbf{C})/N_{S_n}(G) \stackrel{\text{def}}{=} Ni^{\text{abs}}$ (given $G \leq S_n$ a permutation representation)
- Poincaré extensions: $\psi_{\pmb{g}}: M_{\bar{\pmb{g}}} \to G$, preserving extension properties of $\psi_{\pmb{g}}$

Modular Towers and Start of Criterion for GOAL 1

GOAL 1: Given (G, \mathbf{C}, p) , understand projective systems of H_r orbits acting on $\{\operatorname{Ni}(H, \mathbf{C})^{\operatorname{in}}\}_{H\to G}$: Running over p-Frattini covers $H\to G$.

Reduction: Take $G_1 \to G = G_0$ to be the maximal p-Frattini cover of G with elementary p group kernel. Let $G_{k+1} = G_1(G_k)$. In GOAL 1 need only the case H runs over the G_k s.

Def: M(odular) T(ower): A projective system $\{O_k = H_r(\boldsymbol{g}_k)\}_{k=0}^{\infty}$ of H_r orbits on $\{\operatorname{Ni}(G_k, \boldsymbol{\mathbb{C}})^{\operatorname{in}}\}_{k=0}^{\infty}$.

Inductive Existence of a MT: [Lum, Cor. 4.19], [We]

Let $\mu_k: R_k \to G_k$ be the universal exponent p central extension of G_k :

- $G_{k+1} \to G_k$ factors through μ_k .
- $\ker(R_k \to G_k) = \max$. elementary p-quotient of G_k s Schur multiplier.

Proposition 1 (App. C– Abel. Vers.). If p-perfect G has no p-center, then neither does G_k , $k \ge 1$.

 $H_r(\boldsymbol{g}_k) \subset \operatorname{Ni}(G_k, \boldsymbol{\mathsf{C}})^{\operatorname{in}}$ is in the image of $\operatorname{Ni}(G_{k+1}, \boldsymbol{\mathsf{C}})^{\operatorname{in}} \Leftrightarrow \boldsymbol{g}_k$ is in the image of $\operatorname{Ni}(R_k, \boldsymbol{\mathsf{C}}) \Leftrightarrow H_r$ orbit of $M_{\boldsymbol{g}} \to G$ extends through all G_k .

Cusps and the p Cusp Problem

Cusp on an H_r orbit $O \subset Ni(G, \mathbf{C})$:

- $r \geq 5$: Orbit of $Cu_r = \langle q_2 \rangle$
- r = 4: $Cu_r = \langle q_2, \mathbf{sh}^2, q_1 q_3^{-1} \rangle$.

Essential data from conjugacy class of Cu_r , so can substitute q_i for q_2 .

p cusp: represented by $\boldsymbol{g} \in O$ for which $p^{\mu_p(\boldsymbol{g})}||\operatorname{ord}(g_2g_3) \stackrel{\text{def}}{=} (\boldsymbol{g}) \operatorname{mpr}, \mu_p(\boldsymbol{g}) > 0(p\text{-mult. of }\boldsymbol{g}).$

Other cusp types for r = 4 (App. B for r > 4)

- ullet g(roup)-p': $U_{1,4}(oldsymbol{g})=\langle g_1,g_4
 angle$ and $U_{2,3}(oldsymbol{g})=\langle g_2,g_3
 angle$ are p' groups
- o(nly)-p': Not a p cusp, but $U_{1,4}(\mathbf{g})$ or $U_{2,3}(\mathbf{g})$ not p'. GOAL 2: Given a MT, $\{O_k \subset \operatorname{Ni}(G_k, \mathbf{C})^{\operatorname{in}}\}_{k=0}^{\infty}$, classify when there is a p cusp on O_k for k >> 0.

Proposition 2 (g-p' MT). If O_0 has a g-p' cusp, then $a \operatorname{MT}, \mathcal{O} = \{O_k \subset \operatorname{Ni}(G_k, \mathbf{C})^{\operatorname{in}}\}_{k=0}^{\infty}$, lies over it.

MT Geometric correspondence

$$\mathcal{O} = \{O_k \subset \operatorname{Ni}(G_k, \mathbf{C})^{\operatorname{in}}\}_{k=0}^{\infty} \Leftrightarrow \{\mathcal{H}_k'\}_{k=0}^{\infty} \text{ where: }$$

- \mathcal{H}'_k s are (normal) absolutely irreducible algebraic varieties (dim=r-3);
- Cusps at level k correspond to divisors on the normal compactification $\bar{\mathcal{H}}'_k$.
- $_{0}\boldsymbol{g}\in O_{0}$ a p cusp $\Longrightarrow \mu_{p}(_{k}\boldsymbol{g})=k+\mu_{p}(_{0}\boldsymbol{g}).$
- r = 4: \mathcal{H}'_k , upper-half plane quotient, j-line cover, ramific. order dividing 3 (resp. 2) over 0 (resp. 1).

p Cusps and Main MT Conjecture

Main Conj.: K a number field, then $\mathcal{H}'_k(K) = \emptyset$ for k >> 0. For r = 4, let g'_k be the genus of $\bar{\mathcal{H}}_k$.

Proposition 3. If $g'_0 > 0$, (resp. = 0) and, for some k, \mathcal{H}'_k has a p cusp $(resp. three \ p \ cusps)$, then Main Conj. holds for \mathcal{O} .

Example 4 (Liu-Osserman). Among pure-cycle classes, $n \equiv 1 \mod 4$, $\mathbf{C}_{(\frac{n+1}{2})^4}$, four reps of the $\frac{n+1}{2}$ -cycle conjugacy class is, maybe, the hardest case. Here: $G_0 = A_n$.

For p = 2 (resp. > 2), $R_0 = \operatorname{Spin}_n$ (resp. $R_0 = A_n$).

Cusp rep listings, r=4, $\operatorname{Ni}_{(\frac{n+1}{2})^4}^{\operatorname{abs or in}}$ Define $x_{i,j}=(i\,i+1\,\cdots\,j)$. g-2' cusps here are shifts of HM reps. $(g_1, g_1^{-1}, g_2, g_2^{-1})$. Mod conjugation by A_n they are

$$\begin{aligned} & \text{HM}_1 \stackrel{\text{def}}{=} & (x_{\frac{n+1}{2},1}, x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}}) \\ & \text{HM}_2 \stackrel{\text{def}}{=} & (x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}}) \end{aligned}$$

Proposition 5. For $n \equiv 1 \mod 8$ (resp. $n \equiv 5 \mod 8$), HM_1 and HM_2 are (resp. are not) inner equivalent. For the latter, $(HM_1)q_1 = HM_2$ implies there is a braid between $\boldsymbol{g} \in \operatorname{Ni}(A_n, \mathbf{C}_{(\frac{n+1}{2})^4})^{\operatorname{in}} \ and \ h\boldsymbol{g}h^{-1} \ for \ any \ h \in S_n, \ and \ so$ there is one braid orbit on $Ni(A_n, \mathbf{C}_{(\frac{n+1}{2})^4})^{in}$. For $n \equiv 1 \mod 8$, if $h \in S_n \backslash A_n$, there is no braid between

 \boldsymbol{g} and $h\boldsymbol{g}h^{-1}$. Exactly two braid orbits on $Ni(A_n, \mathbf{C}_{(\frac{n+1}{2})^4})^{in}$.

Cusp rep listings, r=4, $\mathrm{Ni}_{(\frac{n+1}{2})^4}$: Table_{(HM_{1,0})Cu₄osh}

Cu₄(HM₁): {HM_{1,t} = $(x_{\frac{n+1}{2},1}, x_{1+t,\frac{n+1}{2}+t}, x_{\frac{n+1}{2}+t,n+t}, x_{n,\frac{n+1}{2}})$ } $_{t=0}^{n-1}$ (subscripts mod n). Row starts ord (g_2g_3) :

1:
$$(HM_{1,0})$$
sh = $(x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1})$

3:
$$(HM_{1,1})$$
sh = $(x_{2,\frac{n+3}{2}},(\frac{n+3}{2}\ldots n 1),x_{n,\frac{n+1}{2}},x_{\frac{n+1}{2},1})$

5:
$$(HM_{1,2})$$
sh = $(x_{3,\frac{n+5}{2}}, (\frac{n+5}{2} \dots n 1 2), x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1})$

n:
$$(HM_{1,\frac{n-1}{2}})$$
sh = $(x_{\frac{n+1}{2}n},(n\ 1\ \dots\ \frac{n-1}{2}),x_{n,\frac{n+1}{2}},x_{\frac{n+1}{2},1})$

n:
$$(HM_{1,\frac{n+1}{2}})$$
sh = $((\frac{n+3}{2} \dots n 1), x_{1,\frac{n+1}{2}}, x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1})$

5:
$$(HM_{1,n-2})$$
sh = $((n-1 n 1 \dots \frac{n-3}{2}), x_{\frac{n-3}{2},n-2}, x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1})$

3:
$$(HM_{1,n-1})$$
sh = $((n \ 1 \ \dots \ \frac{n-1}{2}), x_{\frac{n-1}{2},n-1}, x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1})$

sh-incidence Matrix: r=4 and $\mathrm{Ni}_{34}^{\mathrm{in,rd}}$

Pairing on Cu_4 orbits: $(O,O')\mapsto |O\cap(O')\operatorname{sh}|$. $O_{5,5;2}$ (resp. $O_{1,2}$) indicates 2nd **mpr** 5, width 5 (resp. only **mpr** 1, width 2) orbit. **sh**-incidence gives $\bar{\mathcal{H}}(A_5,\mathbf{C}_{3^4})^{\operatorname{in},\operatorname{rd}}$ has genus 0. All $\mathcal{H}^{\operatorname{in},\operatorname{rd}}_{(\frac{n+1}{2})^4}$ for $n\equiv 1\mod 4$ have genus 0.

Orbit	$O_{5,5;1}$	$O_{5,5;2}$	$O_{3,3;1}$	$O_{3,3;2}$	$O_{1,2}$
$O_{5,5;1}$	0	2	1	1	1
$O_{5,5;2}$	2	0	1	1	1
$O_{3,3;1}$	1	1	0	1	0
$O_{3,3;2}$	1	1	1	0	0
$O_{1,2}$	1	1	0	0	0

Complete orbit for $\bar{M}_4=\langle {\bf sh},\gamma_\infty\rangle$ on ${\rm Ni}_{34}^{{\rm in},{\rm rd}}$ in 2-steps: Apply $({\bf sh}\circ{\rm Cu}_4)^2$ to H-M rep.

Fried-Serre Lifting Invariant formula

Level 0 Dilemma: $\operatorname{ord}(g_2g_3)=\ell$ in each line of $\operatorname{Table}_{(\operatorname{HM}_{1,0})\operatorname{Cu}_4\circ\operatorname{sh}}$ is an odd: no 2 cusps at level 0.

Help by Level 1: The exact condition for each cusp at level 1 above the cusp in $\mathbf{Table}_{(\mathrm{HM}_{1,0})\mathrm{Cu}_4\circ \mathbf{sh}}$ to be a 2 cusp is that $\frac{\ell^2-1}{8}\equiv 1\mod 2$.

Main Conjecture?: n = 5, $\ell \in \{1, 3, 3, 5, 5\}$, so four (> 3) 2 cusps $(\frac{3^2-1}{2} \equiv \frac{5^2-1}{2} \equiv 1 \mod 2)$.

 $n=9,\ \ell\in\{1,3,5,7,9\}$: two 2 cusps ($\Leftrightarrow \ell=3,5$) at level 1 for certain, but above cusps with middle products 7 and 9, not clear there is a 2 cusp. Need more info on level 1 cusps.

All $Ni_{(\frac{n+1}{2})^4}$ satisfy Main Conjecture for p=2

Get all odd $1, \ldots, n$ on left side of $\mathbf{Table}_{(\mathrm{HM}_{1,0})\mathrm{Cu}_4\circ \mathsf{sh}}$, so number of 2 cusps groups with n. For n=17 get ≥ 2 more: $\frac{11^2-1}{8} \equiv \frac{13^2-1}{8} \equiv 1 \mod 2$.

Appendix A: Classical Generators of $\pi_1(\mathbb{P}^1_z \setminus \boldsymbol{z}^0, z_0)$

Appendix B: Classification of cusps on a MT

Appendix C: Abelianized versions of Goals 1 and 2

Item #1 on p. 3 has an abelianized version \Leftrightarrow Abelianized version of p. 4 Goal: When are all p-Frattini covers $H \to G \to 1$ achieved by abelian unramified extensions $Y_H \to X$? With G_k the characteristic p-Frattini cover G_k , and

 $\ker_k^* = (\ker(G_k \to G), \ker(G_k \to G)), \text{ form } G_k^{ab} = G_k / \ker_k^*.$

Proposition 6 (Abel. Vers. of Prop. 1, p.3). Let $R_0' \to G$ be the maximal central p-Frattini extension of G.

Then, for all k, $H_r(\mathbf{g}_0) \subset \text{Ni}(G_0, \mathbf{C})^{\text{in}}$ is in the image of $Ni(G_k^{ab}, \mathbf{C})^{in} \Leftrightarrow \mathbf{g}_0$ is in the image of $Ni(R_0', \mathbf{C})$.

Abbreviated References: [Lum] has much more

- [BFr02] P. Bailey and M. D. Fried, *Hurwitz monodromy, spin separation and higher levels of a Modular Tower,* in Proceed. of Symposia in Pure Math. **70** (2002) editors M. Fried and Y. Ihara, 1999 von Neumann Symposium, August 16-27, 1999 MSRI, 79–221.
- [STMT]A. Cadoret, Modular Towers and Torsion on Abelian Varieties, preprint May, 2006.
 - [D06] P. Dèbes, Modular Towers: Construction and Diophantine Questions, same vol. as [LUM].
- [Def-Lst]Select from the list in www.math.uci.edu/conffiles_rims/deflist-mt/full-deflist- mt.html of present MT-related definitions. 09/05/06 examples: Branch-Cycle-Lem CFPV-Thm Cusp-Comp-Tree FS-Lift-Inv Hurwitz-Spaces Main-MT-Conj Modular-Towers Nielsen- Classes RIGP Strong-Tors-Conj mt-rigp-stc p-Poincare-Dual sh-Inc-Mat. A similar URL, www.math.uci.edu/conffiles_rims/deflist-mt/full-paplist-mt.html, is a repository for not just mine, but also of the growing list of those joining the MT project.
- [FrK97] M. Fried and Y. Kopeliovic, *Applying Modular Towers to the inverse Galois problem*, Geometric Galois Actions II Dessins d'Enfants, Mapping Class Groups . . . , vol. 243, Cambridge U. Press, 1997, London Math. Soc. Lecture Notes, 172–197.
 - [Fr77] M. Fried, Fields of definition of function fields and Hurwitz families and groups as Galois groups, Communications in Algebra 5 (1977), 17–82.
 - [FrV]Michael D. Fried and Helmut Völklein, *The inverse Galois problem and rational points on moduli spaces*, Math. Ann. **290** (1991), no. 4, 771–800.
 - [Lum]M. D. Fried, *The Main Conjecture of Modular Towers and its higher rank generalization*, in Groupes de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et Congres, **13** (2006), 165–230.
- [AGLI]M. D. Fried, Alternating groups and lifting invariants, (2006), 1–36.

- [LOs06] F. Liu and B. Osserman, *The Irreducibility of Certain Pure-cycle Hurwitz Spaces*, preprint as of August 10, 2006.
- [Ser90a]J.-P. Serre, Relêvements dans \tilde{A}_n , C. R. Acad. Sci. Paris **311** (1990), 477–482.
 - [We]T. Weigel, Maximal p-frattini quotients of p-poincare duality groups of dimension 2, volume for O.H. Kegel on his 70th birthday, Arkiv der Mathematik–Basel, 2005.